Hong Kong Baptist University Faculty of Science – Department of Physics

Title (Units):	PHYS 4007	ADVANCES IN LIGHTING (3,3,	DISPLAYS AND 1)	
Course Aims:	of displays and	lighting that are w	nsight on understanding the providely used for application in e, advanced flat panel displ	n mobile

Pre-requisite: Year 4 standing or consent of instructor.

energy efficient lighting.

Prof. Fu-rong Zhu, Prof. Kok-wai Cheah and Prof. Shu-kong So Course reviewed by:

Course Intended Learning Outcomes (CILOs):

No.	Upon successful completion of this course, students should be able to:
1	Explain the basic principles, measurements and applications of various display and lighting technologies outlined in the course content.
2	Explain the fundamentals of light generation, measurement of light and quantitative description of the effect of radiation.
3	Describe the basic operation principles and applications of flat panel displays, LEDs and OLEDs for lighting, relating to the electroluminescent processes, light extraction, choice of materials and device design.
4	Illustrate the differences between LEDs and OLEDs, ways to produce the white light from LEDs and OLEDs, and applications in displays and lighting.

Teaching and Learning Activities (TLAs):

CILOs	TLAs will include the following:
1-4	Students will learn from lectures on the concept/theory and related
	issues of the topics outlined in the course content.
1-4	Emphasis is placed on understanding the principles of flat panel
	displays and lighting, device physics of LEDs and OLEDs, and
	production of white light.
1-4	Advances in flat panel displays and lighting will be reviewed and
	discussed to highlight the unique capabilities of each technology.
1-4	Students will have a good background to the advanced flat panel
	displays and lighting techniques, understanding the advantages and
	limitations of each.

Hong Kong Baptist University Faculty of Science – Department of Physics

Type of Assessment Methods	Weighting	CILOs to be addressed	Description of Assessment Tasks
Continuous Assessment (problem and reading assignments)	25%	1-4	Problem and reading assignments are designed to measure how well the students have learned the basic principles, measurements and applications of LEDs and OLEDs in displays and lighting.
Mini-projects and presentations	25%	1-4	Mini-project presentations are graded based on students' understanding on the technologies and critical discussions by giving actual examples of advanced displays and lighting.
2-hour Final Examination	50%	1-4	Final Examination questions are designed to see how far students have achieved their intended learning outcomes.

Assessment Methods (AMs):

Learning Outcomes and Weighting:

Content		CILO No.	Teaching
			(in hours)
I.	Introduction	1-4	1
II.	Light Sources	1-4	3
III.	Colorimetry	1-4	6
IV.	Introduction to Flat Panel Displays	1-4	12
V.	Lighting Basics	1-4	6
VI.	LED for Lighting	1-4	6
VII.	White OLED for Lighting	1-4	6

Textbook: None.

References:

- 1. Rolf R. Hainich and Oliver Bimber, Displays: Fundamentals and Applications, CRC Press, 2011.
- Günther Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Pure & Applied Optics Series), John Wiley & Sons, 1982.
- 3. Jiun-Haw Lee, David N. Liu and Shin-Tson Wu, Introduction to Flat Panel Displays, John Wiley & Sons, 2008.
- 4. Gregory P. Crawford, Flexible Flat Panel Displays (Wiley SID Series in Display Technology), John Wiley & Sons, 2005.
- 5. Zhigang Li and Hong Meng, Organic Light-emitting Materials and Devices, Taylor & Francis, 2007.
- 6. Patrick Mottier, LEDs for Lighting Applications, John Wiley & Sons, 2009.
- 7. Zakya H. Kafafi, Organic Electroluminescence, Taylor & Francis, 2005.

Hong Kong Baptist University Faculty of Science – Department of Physics

Course Contents in Outline:

	Торіс	Hours
I.	Introduction	1
II.	Light Sources	3
	A. Fundamentals of light	
	B. The Sun and daylight	
	C. Different lighting technologies	
III.	Colorimetry	6
	A. Basics of visual vision	
	B. The CIE colorimetric system	
	C. Photometry and radiometry	
IV.	Introduction to Flat Panel Displays	12
1	A. Non-emissive and emissive displays	
	B. Fundamentals of flat panel displays	
	C. Flat panel displays	
V.	Lighting Basics	6
v.	A. Traditional lighting technologies	0
	A. Traditional righting technologies B. Color temperature and color rendering index	
	C. Smart and energy efficient lighting	
VI.	LEDs for Lighting	6
V 1.	A. Physics of p-n junctions	0
	B. White light generation	
	C. Challenges in LED solid state lighting	
VII	White OLEDs for Lichting	
VII.	White OLEDs for Lighting	6
	A. Development of OLEDs	
	B. Principles and characteristics of white OLEDsC. WOLEDs: the next generation lighting	
	C. WOLEDs: the next generation lighting	